

lechyd Cyhoeddus Cymru Public Health Wales

International Horizon Scanning and Learning to Inform Wales' COVID-19 Public Health Response and Recovery Report 28, 13/05/2021

Canolfan Gydweithredol Sefydliad lechyd y Byd ar Fuddsoddi ar gyfer lechyd a Llesiant

World Health Organization Collaborating Centre on Investment for Health and Well-being

World Health Organization Collaborating Centre on Investment for Health and Well-being

Overview

The International Horizon Scanning and Learning work stream was initiated following and informing the evolving coronavirus (COVID-19) public health response and recovery plans in Wales. It focuses on COVID-19 international evidence, experience, measures, transition and recovery approaches, to understand and explore solutions for addressing the on-going and emerging health, wellbeing, social and economic impacts (potential harms and benefits).

The learning and intelligence is summarised in weekly reports to inform decisionmaking. These may vary in focus and scope, depending on the evolving COVID-19 situation and public health / policy needs.

This work is aligned with and feeding into the Welsh Government Office for Science and into Public Health Wales Gold Command. It is part of a wider Public Health Wales' systematic approach to intelligence gathering to inform comprehensive, coherent, inclusive and evidence-informed policy action, which supports the Wellbeing of Future Generations (Wales) Act and the Prosperity for All national strategy towards a healthier, more equal, resilient, prosperous and globally responsible Wales.

Disclaimer: The reports provide high-level summary of emerging evidence from country experience and epidemiology; research papers (peer-reviewed/not); and key organisations' guidance / reports, including sources of information to allow further exploration. The reports do not provide detailed or in-depth data/evidence analysis. Due to the novelty of COVID-19 virus/disease, and dynamic change in situation, studies and evidence can be conflicting, inconclusive or depending on country/other context.

In focus this week

Long COVID

L Telework due to COVID-19

Contents

At a glance: summary of international learning on COVID-19	. 3
Long COVID	. 4
Telework due to COVID-191	11

World Health Organization Collaborating Centre on Investment for Health and Well-being

At a glance: summary of international learning on COVID-19

"The progress made so far in combating the coronavirus has been encouraging. However, this is not a battle that ends when the last confirmed case is treated." (United Nations Development Programme, UNDP)

Long COVID

- 'Long COVID' / 'Post-COVID Syndrome' or 'Post-acute COVID' is an emerging condition, not yet well understood, but potentially severely disabling
- Long COVID causes persistent ill-health with a wide range of long lasting symptoms for more than four / eight or twelve weeks
- The mechanisms involved affect multiple systems and include persisting inflammation, thrombosis, and autoimmune reaction
- Evidence suggests that Long COVID is associated with age, female sex, symptoms in the acute phase, hospitalisation, certain co-morbidities and risk factors
- A substantial number of adults with COVID-19 suffer from Long COVID, but exact numbers are difficult to estimate and studies vary substantially across countries
- Long COVID has a serious impact on people's ability to go back to work or socialise, and may have significant economic consequences
- Multidisciplinary approach to assessment and management; monitoring, surveillance and research; and patient involvement are instrumental to addressing Long COVID
- Policy response needs to consider the complexity and dynamic evolution of Long COVID, using an organised health system approach, including designated clinics More information is summarised on pp.4-10

Telework due to COVID-19

- Social distancing measures to contain COVID-19 have increased the prevalence of 'telework', including working from home (remote) and flexible working
- The prevalence of telework varies substantially between countries, sectors, and occupations before and after the COVID-19 pandemic
- Telework has reached a tipping point due to COVID-19, as more companies and institutions have introduced home/flexible working to keep their employees safe, while ensuring the continued delivery of critical services
- There are significant global disparities in the type of employment, infrastructure and opportunities for telework across countries and regions
- Key advantages of teleworking include increased productivity; reduced cost of living; reduced time and cost of commute; and reduced air pollution in some countries
- Key barriers to teleworking include lack of skills and training; lack of organisational health and safety guidelines; labour rights legislation; data security and privacy issues; digital divide and lack of appropriate IT infrastructure and devices
- **Key challenges and risks** of telework include work-home interference; ineffective communication; procrastination; loneliness and isolation; impact on mental health
- Introducing flexible, people-centred national, local and organisational policies is essential to protect employees' health and well-being, enable productivity and innovation, harness the benefits and mitigate the risks of remote working

More information is summarised on pp.11-15

Long COVID

Overview¹²³⁴⁵⁶⁷

- COVID-19 infection can cause persistent ill-health with a wide range of long lasting symptoms, commonly referred to as 'Long COVID', 'Post-COVID Syndrome' or 'Postacute COVID'
- Currently, there is **no consensus on an officially accepted definition** for Long COVID
- Most clinical definitions describe it as 'symptoms that develop during and/ or after an infection with COVID-19 and continue for more than 12 weeks and have not been explained by any alternative diagnosis'
- There is growing evidence that Long COVID is both common and debilitating
- The most prevalent symptoms, associated with Long COVID include chronic fatigue, difficulty breathing, chest pain, joint/muscle pain, persistent cough, difficulty concentrating / cognitive dysfunction, headache, loss of smell/taste, and others⁸ (*Figure 1*)
- The mechanisms involved affect multiple systems and include persisting inflammation, thrombosis, and autoimmune reaction
- Long COVID has a serious impact on people's ability to go back to work or socialise, and may have significant economic consequences for them, their families and for society

Figure 1. COVID-19 related symptoms of patients during acute and post-acute phase (%)⁸

- ¹ <u>https://www.nice.org.uk/guidance/ng188</u> ² https://www.nice.org.uk/guidance/ng188/chapter/comm
- ² https://www.nice.org.uk/guidance/ng188/chapter/common-symptoms-of-ongoing-symptomatic-covid-19-and-post-covid-19-syndrome ³ https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects.html
- ⁴ https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(21)00125-9/fulltext
- ⁵ https://www.nature.com/articles/s41591-021-01283-z
 ⁶ https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update54_clinical_long_term_effects.pdf?sfvrsn=3e63eee5_8

⁷ https://eurohealthobservatory.who.int/publications/i/in-the-wake-of-the-pandemic-preparing-for-long-covid-(2021)
⁸ https://www.ncbi.nlm.pib.acu/mmo/criticles/IMCC2440006/

⁸ <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349096/</u>

World Health Organization Collaborating Centre on Investment for Health and Well-being

- COVID-19 timeline⁹ includes (Figure 2):
 - ✓ Short COVID-19 lasting up to ten days from the onset of symptoms without a relapse
 - Acute COVID-19 lasting up to four weeks from the onset of symptoms
 - ✓ **Post-acute COVID-19 persisting beyond four weeks**, including:
 - a) more than 4 weeks (28 days) Long Covid LC28
 - b) more than 8 weeks (56 days) Long Covid LC56
 - c) more than 12 weeks (84 days) Long Covid LC84

Figure 2. Timeline for acute and post-acute COVID-199

Epidemiology of Long COVID⁹¹⁰¹¹

- There is no conclusive evidence about the prevalence of people experiencing Long COVID and numbers are currently difficult to estimate
- There are significant differences between studies across countries; and between studies in hospitalised and non-hospitalised patients (*Tables 1, 2 and 3*)¹⁰
- At least one in five people (20%) infected with COVID-19 experience persisting ill health following the acute phase of infection; around a quarter (25%) experience symptoms that continue for at least a month (4 weeks); and one in ten (10%) are still unwell after 12 weeks

⁹ <u>https://www.nature.com/articles/s41591-021-01283-z</u>

¹⁰ https://eurohealthobservatory.who.int/publications/i/in-the-wake-of-the-pandemic-preparing-for-long-covid-(2021)

¹¹ https://www.nature.com/articles/s41591-021-01292-y

World Health Organization Collaborating Centre on Investment for Health and Well-being

Table 1. Summary of selected studies on the prevalence of Long COVID in non-hospitalised patients¹⁰

COUNTRY	STUDY	SAMPLE	NUMBER OF CASES INCLUDED	RESULTS
United Kingdom	Office for National Statistics (2020)	Population representative	8 193	 21% had symptoms 5 weeks after infection 10% had symptoms 12 weeks after infection
	Sudre et al. (2020)	COVID Symptom App users (out of which 14% were hospitalized)	4 182	 13% of cases had symptoms lasting 28 days after symptom onset 5% of cases had symptoms for over 8 weeks and 2% for over 12 weeks after symptom onset
	Townsend et al. (2020)	Hospital outpatients (out of which 56% were hospitalized)	127	• 52% reported persistent fatigue at 10 weeks after symptom onset
USA	Tenforde et al. (2020)	Hospital outpatients (out of which 7% were hospitalized)	292	• 35% had symptoms after a median of 16 days after testing positively for SARS-CoV-2 infection
Switzerland	Nehme et al. (2020)	Hospital outpatients	669	 About 33% of cases had symptoms 30–45 days after diagnosis
The Netherlands and Belgium	Goërtz et al. (2020) [♭]	Facebook group for coronavirus patients with persistent complaints (out of which 5% were hospitalized)	2 113	• Over 99% infected individuals did not fully recover within 12 weeks after symptom onset

^aSome of the studies reported in this table included hospitalized patients ^bIncluded suspected cases

Table 1. Summary of selected studies on the prevalence of Long COVID in hospitalised patients post discharge¹⁰

COUNTRY	STUDY	NUMBER OF CASES INCLUDED	RESULTS	
Canada	Wong et al. (2020)	78	 51% had persistently reduced quality of life and 50% had shortness of breath at 12 weeks after symptom onset 	
France	Carvalho-Schneider et al. (2020)	130	• 40% reported persistent fatigue and 30% breathlessness at 60 days after symptom onset	
Italy	Carfi, Bernabei & Landi (2020)	143	• 87% had symptoms, 55% had three or more symptoms at 60 days after discharge	
United Kingdom	Cruz et al. (2020)	119	• 68% reported persistent fatigue, 57% sleep disturbance and 32% breathlessness at 60 days after discharge	
	Arnold et al. (2020)	110	• 74% had persistent symptoms, typically breathlessness and fatigue and 10% had persistent anomalies on chest X-ray or respiratory function testing at 12 weeks after discharge	
USA	Donnelly et al. (2020)	2 179	• 19.9% were readmitted, 9.1% died and 27% were readmitted or died within 60 days after discharge	
China	Huang et al. (2021)	1 733	 76% reported persistent symptoms, and 50% had residual anomalies on chest imaging 6 months after discharge 	

World Health Organization Collaborating Centre on Investment for Health and Well-being

Table 3. Long COVID-19 across selected countries 121314151617181920

United Kingdom	- Approximately 1 in 7 people with COVID-19 continue to experience symptoms affecting their					
	quality of life beyond 12 weeks					
Italy	– A study reported that 87% of individuals discharged from hospital were still experiencing at least					
	one symptom 60 days after the onset on COVID-19; and 55% had three or more symptoms					
	including fatigue (53%), difficulty breathing (43%), joint pain (27%), and chest pain (22%) with					
	40% saying it had reduced the quality of their life					
France	- A chronic illness research project 'ComPaRe' carried out a survey with 600 patients. They					
	identified at least 50 symptoms reported in connection with Long COVID					
Norway	- A meta-analysis of 43 studies, looking at the long-term effects of COVID-19, found					
	hospitalised patients reported having symptoms long after infection (beyond 28 days)					
	– A prospective cohort study of 312 COVID-19 patients found that 61% had persistent symptoms					
	after 6 months, with the most common symptom being fatigue (37% of patients); and young,					
	home-isolated adults with mild COVID-19 are at risk of long-lasting dyspnoea and cognitive					
	symptoms such as memory loss					
Israel	- In March 2021, around 50 people have reported having Long COVID, with most being children					
Canada	- A study with 2,000 COVID-19 patients is planned looking at one-year outcomes					
United States	- Studies have shown that COVID-19 patients experiencing symptoms beyond three months is					
	between 50% and 80%					
	- Early studies have indicated that one in ten are likely to experience symptoms for at least a year					
Australia	- An observational study, carried out on 478 COVID-19 patients, found that 51% had reported new					
	onset of symptoms with fatigue affecting a third of the respondents					

- Data from an international study exploring the duration of COVID-19 symptoms in individuals who tested positive in the UK, USA and Sweden (total number = 4,182) shows (*Figure 3*)²¹:
 - ✓ Overall median symptom duration of 11 (6–19) days
 - ✓ 1,591 (38.0%) individuals had short COVID-19 with symptom duration of 6 (4–8) days
 - ✓ 558 (13.3%) people met the LC28 definition; from those: 189 (4.5%) had LC56 (duration ≥ 56 days) and 108 (2.6%) had LC84 (duration ≥ 84 days)

https://www.timesofisrael.com/21-year-old-said-in-serious-condition-from-long-covid/
 https://www.connexionfrance.com/French-news/Long-Covid-France-considers-how-to-help-long-term-cases-months-after-diagnoses

Https://www.fbi.no/en/pub/2021/Long-Term-Effects-of-COVID-19/

 ¹⁵ https://assets.researchsguare.com/illes/rs-23833/v1/2/d0/debf-de4d-431e-872e-b4fa8a587744.pdf

https://www1.racqp.org.au/newspi/clinical/long-covid-may-occur-in-more-than-half-of-all-case
 https://jamanetwork.com/journals/jama/fullarticle/2768351

https://arranetwork.com/journals/arranetwork/com/journals/arranetwork/cossi
 https://eurohealthobservatory.who.int/publications/i/in-the-wake-of-the-pandemic-preparing-for-long-covid-(2021)

²¹ https://www.nature.com/articles/s41591-021-01292-y

World Health Organization **Collaborating Centre on Investment** for Health and Well-being

- It is still **unclear why** some individuals experience Long COVID and others do not
- Evidence suggests that Long COVID is associated with age, female sex, number of symptoms in the acute phase, hospitalisation, certain co-morbidities and risk factors²² (Figures 4 and 5):
 - ✓ LC28 is significantly associated with age, rising from 9.9% in the individuals aged 18-49 years to 21.9% in those aged \geq 70 years, with an escalation in odds ratio (OR) by age decile
 - ✓ LC28 disproportionately affects women (14.9%) compared with men (9.5%), although not in the older age group (\geq 70 years)
 - ✓ Individuals with LC28 were more likely to have required hospital assessment
 - ✓ Asthma as a pre-existing condition is significantly associated with LC28 (OR = 2.14 (95% confidence interval (CI) 1.55-2.96))
- Long COVID affects all socioeconomic groups with somewhat increased odds (likelihood) of LC56 in the most deprived quintile (Figure 6)²²
- Children can also, rarely, be affected by a separate multisystem condition

Figure 4. Odds ratios (with 95% confidence intervals) for female and male sex indicating the risk of developing Long COVID for age deciles above 30 years of age, compared to the 20-30 year-old age group (OR = 1 means no increased risk)²²

Figure 5. Odds ratios (with 95% confidence interval) indicating increased risk developing Long COVID for different comorbidities / risk factors, according to age (OR = 1 means no increased risk)²²

Figure 6. Ratio of LC28 and LC56 versus Short COVID by Index of Multiple Deprivation (IMD)²² 1 - the most deprived quintile 5 - the least deprived quintile

22 https://www.nature.com/articles/s41591-021-01292-y

World Health Organization Collaborating Centre on Investment for Health and Well-being

Diagnosis, treatment and policy response²³²⁴

- There is no simple symptom or test for diagnosing Long COVID
- No specific treatment of Long COVID-19 has been identified yet
- More robust data, surveillance mechanisms and a consensus around Long COVID definition is needed to better understand the symptoms, improve treatment services and allocate resources more appropriately to support patients and families
- **Surveillance** is a critical part of monitoring Long COVID but is not widespread in Europe
- Multidisciplinary collaboration and management is essential to provide integrated outpatient care to survivors of COVID-19 in designated clinics (*Figure 7*)
- Patients with Long COVID often report their difficulties are not taken seriously
- Policy response needs to take account of the complexity and dynamic evolution of Long COVID, including:
 - ✓ Multidisciplinary, multispecialty approaches to assessment and management
 - ✓ Development of new care pathways and guidelines for health professionals, in association with patients and their families, especially in primary care
 - ✓ Creation of appropriate services, including rehabilitation and online support tools
 - Action to tackle the wider consequences of Long COVID, including employment rights, sick pay policies, access to benefit and disability benefit packages
 - Involving patients to foster self-care and self-help; and in shaping awareness of Long COVID and related services and research
 - ✓ Implementing patient registers and other surveillance systems
- National health system responses include development of dedicated treatment guidelines and pathways, and creation of post-COVID clinics and online support tools

Country insight: the UK²⁵²⁶²⁷²⁸²⁹ and the US³⁰

- Actions across the UK to research and combat the effects of Long COVID include:
 - ✓ £18.5 million invested by the UK government into four research studies to understand Long COVID, including its characteristics, susceptibility and treatment
 - ✓ The NHS has launched a Long COVID service to support recovery
 - ✓ NHS England have invested £10 million in specialist Long COVID clinics
 - Numerous support groups have been established over social media to connect people who believe they are suffering from Long COVID
- In the US, Long COVID care clinics are being established at medical centres, featuring multidisciplinary teams providing comprehensive treatment and aftercare, and survivor support groups and resources

https://www.nature.com/articles/s41591-021-01283-z
 https://www.nature.com/articles/s41591-021-01283-z
 https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid1
 9infectionintheuk/1april2021

²³ <u>https://eurohealthobservatory.who.int/publications/i/in-the-wake-of-the-pandemic-preparing-for-long-covid-(2021)</u>

²⁶ <u>https://www.gov.uk/government/news/185-million-to-tackle-long-covid-through-research</u>
²⁷ https://www.health.org.uk/news-and-comment/blogs/what-might-long-covid-mean-for-the-nations-health

https://www.health.org.uk/news-and-comment/blogs/what-might-long-covid-mean-for-til
 https://www.bbc.co.uk/news/health-56601911

https://www.yourcovidrecovery.nhs.uk/
 https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html

World Health Organization Collaborating Centre on Investment for Health and Well-being

Figure 7. Interdisciplinary management in COVID-19 clinics³¹

³¹ <u>https://www.nature.com/articles/s41591-021-01283-z</u>

Telework due to COVID-19

Overview and prevalence of telework³²³³³⁴³⁵³⁶³⁷

Prior to the COVID-19 pandemic

- The International Labour Organisation (ILO) estimated that 7.9% of the world workforce (260 million workers) worked from home on a permanent basis
- Globally, the prevalence of telework was very low with significant variation between countries, sectors, and occupations, for example:
 - ✓ Overall 2% in Europe, varying from 30% or more in Denmark, Netherlands, and Sweden; to 25% or less in Portugal, Greece, Poland, Czech Republic, and Italy
 - ✓ 20–37% in the US
 - ✓ 16% in Japan
 - ✓ 1.6% in Argentina

During the COVID-19 pandemic

- Physical/social distancing measures to contain the virus have increased the prevalence of 'telework', including working from home (remote) and flexible working
- Telework has reached a tipping point due to COVID-19, as more companies and institutions have introduced home/flexible working in an effort to keep their employees safe, while ensuring the continued delivery of critical services
- A survey of 250 large companies in March 2020 found that the percentage of workers who worked from home has risen immensely, for example:
 - Approximately 40% of those currently working in the European Union (EU) started to work remotely fulltime as a result of the pandemic
 - ✓ The percentage of those working from home ranges between 60% in Finland, 50% in Belgium and the Netherlands, and 40% in Austria and Ireland
 - ✓ Around 50% in the US; and in a recent poll, nearly 62% of hiring managers stated their intention to rely more on teleworking in the future
 - ✓ 93% in Argentina
- Data from the UK Office for National Statistics (ONS) found that in April 2020:
 - ✓ 46.6% of people in employment did some work at home
 - ✓ From those who did some work from home, 86% did so as a result of the pandemic
 - ✓ Of those who worked from home, around one-third worked fewer hours than usual (34.4%), and around one-third worked more hours than usual (30.3%)
- Findings from the UK Household Longitudinal Study 'Understanding Society' (Figure 8) found that:
 - ✓ Telework appears to be more prevalent among those who are better qualified and skilled, and higher paid
 - ✓ The proportion of graduates reporting that they worked exclusively at home increased from 8% before lockdown to 62.4% in the first month of lockdown; then dropped by 3% in May 2020; and by a further 3% in June 2020
 - ✓ Before lockdown, telework was more prevalent among the self-employed, however, the gap between employed and self-employed shrank dramatically during lockdown

²² https://www.oecd.org/coronavirus/policy-responses/productivity-gains-from-teleworking-in-the-post-covid-19-era-a5d52e99/

³³ https://ec.europa.eu/irc/sites/ircsh/files/irc120945_policy_brief_- covid_and_telework_final.pdf
³⁴ https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/coronavirusandhomeworkingintheuk/april2020
³⁵ https://wiserd.ac.uk/sites/default/files/documents/Homeworking%20in%20the%20UK_Report_Final_3.pdf

 https://voxeu.org/article/working-home-estimating-worldwide-potential
 https://onlinelibrary.wiley.com/doi/epdf/10.1111/wusa.12498

World Health Organization Collaborating Centre on Investment for Health and Well-being

- A recent study using the Delphi research method with labour market experts to estimate probability of telework in the future³⁸, suggests (*Figure 9*):
 - ✓ Overall, around 18% of workers globally have occupations and live in countries with the infrastructure that would allow them to work remotely
 - ✓ Around 30% of North American and Western European workers are in occupations that allow telework
 - ✓ Latin American and Eastern European workers who would be able to work remotely are between 23% and 18% respectively
 - ✓ Only 6% of sub-Saharan African and 8% of South Asian workers would be able to work remotely

*Figure 8. Exclusive use of the home as a workplace, before and during lockdown by highest qualification, UK*³⁹

Figure 9. Home-based global work estimates³⁸

³⁸ https://voxeu.org/article/working-home-estimating-worldwide-potential

³⁹https://wiserd.ac.uk/sites/default/files/documents/Homeworking%20in%20the%20UK_Report_Final_3.pdf

World Health Organization **Collaborating Centre on Investment** for Health and Well-being

Advantages, barriers and challenges of telework

Advantages⁴⁰

Increased productivity

Two surveys found that around two-thirds of employees report they are more productive when working from home

Reduced commute and cost of living

A recent survey revealed that on average, employees working from home will save £44.78 a week due to reduced costs and claiming on expenses whilst working from home

Reduced air pollution in some countries, such as the UK

Reduced emissions from workers not commuting and from manufacturing or transport companies that have reduced operations as their employees are not able to work from home

Barriers⁴¹⁴²

- Lack of skills and training resources to support teams switching to teleworking
- Lack of organisational health and safety guidelines for the home office
- Labour legislation where home workers do not have the same rights and protections as workers working in the office
- Data security concerns and privacy issues
- A digital divide, including lack of appropriate IT tools and devices in many communities and families

Challenges and risks⁴³

- Work-home interference
 - ✓ More interruptions from family members which may, in turn, influence work productivity
 - ✓ Difficulty 'switching off' from work
- Ineffective communication
 - ✓ Lower efficiency in ICT-mediated communication
 - ✓ Inability to engage in face-to-face meetings
- Procrastination
 - ✓ Defined as an irrational delay of doing the required work
 - ✓ Delay working on the core tasks by spending time on non-work-related activities during working hours, such as using social media and having long breaks
- Loneliness and isolation
 - ✓ Fewer face-to-face interactions with colleagues and supervisors
 - ✓ Loss of social opportunities to meet friends or colleagues
- Impact on mental health, especially among those who always or often worked at home (Figure 10)
 - ✓ For example, over 30% of those working always or often at home in June 2020 reported that they were able to concentrate less or much less than usual; compared to less than 20% of those who reported that they had not worked at home at all.
 - ✓ Those who worked mainly at home reported greater difficulties in enjoying normal dayto-day activities and more often felt constantly being under strain and unhappy with life

https://www.finder.com/uk/working-from-home-statistics https://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/---travail/documents/instructionalmaterial/wcms_751232.pdf https://onlinelibrary.wiley.com/doi/epdf/10.1111/wusa.12498 https://iaap-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/apps.12290

World Health Organization Collaborating Centre on Investment for Health and Well-being

Figure 10. Intensity of homeworking by selected mental health indicators as of June 2020⁴⁴

■ Always worked at home ☐ Often worked at home ☐ Never worked at home

Policies to supporting telework⁴⁵⁴⁶⁴⁷

- The continuing need to undertake telework requires flexible, people-centred national, local and organisational policies and guidelines to protect employees' health and well-being and to enable productivity and innovation
- The **opportunity for communication** between managers and their team, and between colleagues, is essential to reduce the negative impacts associated with isolation
- National and local government policies are instrumental in successfully implementing telework in the long-term, including:
 - Ensuring access to digital infrastructure and reliable, fast broadband, and boosting digital development, which aims to reduce the digital divide across geographical areas, communities and socio-economic (deprivation) levels
 - Promoting the diffusion of managerial best practices, self-management and ICT skills, and investments in home offices
 - ✓ Supporting a knowledge-based economy and capacity building across all sectors, such as education, health, science, as well as the private sector
 - ✓ Investing in technology and education infrastructure, applying innovative solutions
 - ✓ Considering environmental impacts, climate change and economic impacts (inequities)
- Appropriate organisational policies can enable companies/institutions and their staff to benefit from the advantages offered by telework, including increased productivity and better well-being
- To minimise the risks and challenges of widespread teleworking, policy makers should ensure that teleworking remains a choice; and address concerns, such as 'hidden overtime'

https://iaap-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/apps.12290
 https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/s12889-020-09875-z.pdf

https://onlinelibrary.wiley.com/doi/epdf/10.1111/wusa.12498
 https://onlinelibrary.wiley.com/doi/epdf/10.1111/wusa.12498
 https://www.oecd.org/coronavirus/policy-responses/productivity-gains-from-teleworking-in-the-post-covid-19-era-a5d52e99/

World Health Organization **Collaborating Centre on Investment** for Health and Well-being

Country insight: Belgium⁴⁸⁴⁹

- One of the main measures taken by the Belgian Government during the COVID-19 pandemic has been an obligation for employers to organise teleworking
- Initially, the Government based the measures on the 'Effective and Flexible Work Act' which enables 'occasional' teleworking in case of force majeure
- However, a more permanent solution was needed in the longer term, related to nonoccasional teleworking, i.e. a written annex to the employment contract had to be provided and employers also had to bear some of the costs of teleworking
- In January 2021 a new nation-wide Collective Bargaining Agreement ('the CBA') was introduced with specific rules covering teleworking in Belgium until the end 2021, including:
 - \checkmark Payment of an allowance to cover all costs related to the installation, use, maintenance, repair and amortization of equipment for the employee
 - Reinforcing privacy protection for teleworkers in the context of authorized monitoring \checkmark of work
 - ✓ Introducing policies relating to the use of IT equipment
 - ✓ Employers are required to take adequate measures to ensure that teleworkers stay connected with colleagues and the company by organising 'return-to-the-officemoments' in order to ensure workers' wellbeing and prevent isolation
 - ✓ Introducing a 'right to disconnect' in favour of the teleworker

⁸ <u>https://www.twobirds.com/en/news/articles/2021/belgium/belgium-new-rules-on-covid-19-teleworking</u> ⁹ https://journals.sagepub.com/doi/full/10.1177/2031952520934554

The International Horizon Scanning and Learning reports are developed by the International Health Team / the International Health Coordination Centre (IHCC) at the WHO Collaborating Centre on Investment for Health and Well-being (WHO CC), Public Health Wales. Executive lead and WHO CC Director: Mark A Bellis International health lead and WHO CC Deputy Director: Mariana Dyakova Authors and contributors: Anna Stielke, Charlotte Bowles, Andrew Cotter-Roberts, Corinne Bourke, Mischa Van Eimeren, James Allen, Benjamin Bainham Contacts: <u>Mariana.Dyakova@wales.nhs.uk; Anna.Stielke@wales.nhs.uk</u>

phwwhocc.co.uk

Øphwwhocc

Canolfan Gydweithredol Sefydliad lechyd y Byd ar Fuddsoddi ar gyfer lechyd a Llesiant

World Health Organization Collaborating Centre on Investment for Health and Well-being